Thermally induced gas flows in ratchet channels with diffuse and specular boundaries

نویسندگان

  • Vahid Shahabi
  • Tobias Baier
  • Ehsan Roohi
  • Steffen Hardt
چکیده

A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onsager’s cross coupling effects in gas flows confined to micro-channels

In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces...

متن کامل

An approximate model for slug flow heat transfer in channels of arbitrary cross section

In this paper, a novel approximate solution to determine the Nusselt number for thermally developed, slug (low-prandtl), laminar, single phase flow in channels of arbitrary cross section is presented. Using the Saint-Venant principle in torsion of beams, it is shown that the thermally developed Nusselt number for low-prandtl flow is only a function of the geometrical parameters of the channel c...

متن کامل

کاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال

In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...

متن کامل

Gas Mixing Simulation in a T-Shape Micro Channel Using The DSMC Method

Gas mixing in a T-shape micro mixer has been simulated using the Direct Simulation Monte Carlo (DSMC) method. It is considered that the adequate mixing occurs when the mass composition of the species, CO or N2, deviates below 1 % from their equilibrium composition. The mixing coefficient is defined as the ratio of the mixing length to the main channel’s height. As the inlet Kn increases, while ...

متن کامل

Evaluation of Doppler-Delay Properties of Diffuse Components in Vehicular Propagation Channels

In this contribution, both numerical and experimental investigations are performed to evaluate the impact of diffuse scattering on the characteristics of vehicular propagation channels in highway environments. The response of a vehicle-tovehicle (V2V) channel can be composed of discrete specular path components and diffuse scattering components. Simulation results in two V2V scenarios with diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017